346 research outputs found

    Stability effects on results of diffusion tensor imaging analysis by reduction of the number of gradient directions due to motion artifacts: an application to presymptomatic Huntington's disease.

    Get PDF
    In diffusion tensor imaging (DTI), an improvement in the signal-to-noise ratio (SNR) of the fractional anisotropy (FA) maps can be obtained when the number of recorded gradient directions (GD) is increased. Vice versa, elimination of motion-corrupted or noisy GD leads to a more accurate characterization of the diffusion tensor. We previously suggest a slice-wise method for artifact detection in FA maps. This current study applies this approach to a cohort of 18 premanifest Huntington's disease (pHD) subjects and 23 controls. By 2-D voxelwise statistical comparison of original FA-maps and FA-maps with a reduced number of GD, the effect of eliminating GD that were affected by motion was demonstrated.We present an evaluation metric that allows to test if the computed FA-maps (with a reduced number of GD) still reflect a "true" FA-map, as defined by simulations in the control sample. Furthermore, we investigated if omitting data volumes affected by motion in the pHD cohort could lead to an increased SNR in the resulting FA-maps.A high agreement between original FA maps (with all GD) and corrected FA maps (i.e. without GD corrupted by motion) were observed even for numbers of eliminated GD up to 13. Even in one data set in which 46 GD had to be eliminated, the results showed a moderate agreement

    Universality in metallic nanocohesion: a quantum chaos approach

    Full text link
    Convergent semiclassical trace formulae for the density of states and cohesive force of a narrow constriction in an electron gas, whose classical motion is either chaotic or integrable, are derived. It is shown that mode quantization in a metallic point contact or nanowire leads to universal oscillations in its cohesive force: the amplitude of the oscillations depends only on a dimensionless quantum parameter describing the crossover from chaotic to integrable motion, and is of order 1 nano-Newton, in agreement with recent experiments. Interestingly, quantum tunneling is shown to be described quantitatively in terms of the instability of the classical periodic orbits.Comment: corrects spelling of one author name on abstract page (paper is unchanged

    Numerical Investigation, Including Experimental Validation, of an Axially Blown, Stable Arc in Argon

    Get PDF
    In this work we present the outcome of a numerical validation study conducted with an arc model developed within a computational fluid dynamics (CFD) tool. The numerical investigations were aimed at reproducing the spatially resolved temperature data obtained with an experiment in which an axially symmetric argon arc was established in the observation region. The full absorption spectrum has been computed for argon and then compressed with minimum loss of information to a relatively small set of bands. The latter has been used for solving the radiative transfer equation in a computationally affordable, yet accurate way. The comparison between the arc temperature simulated with the reduced absorption data and the measured one is presented

    The Escape Problem in a Classical Field Theory With Two Coupled Fields

    Full text link
    We introduce and analyze a system of two coupled partial differential equations with external noise. The equations are constructed to model transitions of monovalent metallic nanowires with non-axisymmetric intermediate or end states, but also have more general applicability. They provide a rare example of a system for which an exact solution of nonuniform stationary states can be found. We find a transition in activation behavior as the interval length on which the fields are defined is varied. We discuss several applications to physical problems.Comment: 24 page

    SPG10 is a rare cause of spastic paraplegia in European families

    Get PDF
    Background: SPG10 is an autosomal dominant form of hereditary spastic paraplegia (HSP), which is caused by mutations in the neural kinesin heavy chain KIF5A gene, the neuronal motor of fast anterograde axonal transport. Only four mutations have been identified to date.Objective: To determine the frequency of SPG10 in European families with HSP and to specify the SPG10 phenotype.Patients and methods: 80 index patients from families with autosomal dominant HSP were investigated for SPG10 mutations by direct sequencing of the KIF5A motor domain. Additionally, the whole gene was sequenced in 20 of these families.Results: Three novel KIF5A mutations were detected in German families, including one missense mutation (c.759G>T, p.K253N), one in frame deletion (c.768_770delCAA, p.N256del) and one splice site mutation (c.217G>A). Onset of gait disturbance varied from infancy to 30 years of age. All patients presented clinically with pure HSP, but a subclinical sensory--motor neuropathy was detected by neurophysiology studies.Conclusions: SPG10 accounts for approximately 3% of European autosomal dominant HSP families. All mutations affect the motor domain of kinesin and thus most likely impair axonal transport. Clinically, SPG10 is characterised by spastic paraplegia with mostly subclinical peripheral neuropathy

    Relationship between saccadic eye movements and cortical activity as measured by fMRI: quantitative and qualitative aspects

    Get PDF
    We investigated the quantitative relationship between saccadic activity (as reflected in frequency of occurrence and amplitude of saccades) and blood oxygenation level dependent (BOLD) changes in the cerebral cortex using functional magnetic resonance imaging (fMRI). Furthermore, we investigated quantitative changes in cortical activity associated with qualitative changes in the saccade task for comparable levels of saccadic activity. All experiments required the simultaneous acquisition of eye movement and fMRI data. For this purpose we used a new high-resolution limbus-tracking technique for recording eye movements in the magnetic resonance tomograph. In the first two experimental series we varied both frequency and amplitude of saccade stimuli (target jumps). In the third series we varied task difficulty; subjects performed either pro-saccades or anti-saccades. The brain volume investigated comprised the frontal and supplementary eye fields, parietal as well as striate cortex, and the motion sensitive area of the parieto-occipital cortex. All these regions showed saccade-related BOLD responses. The responses in these regions were highly correlated with saccade frequency, indicating that repeated processing of saccades is integrated over time in the BOLD response. In contrast, there was no comparable BOLD change with variation of saccade amplitude. This finding speaks for a topological rather than activity-dependent coding of saccade amplitudes in most cortical regions. In the experiments comparing pro- vs anti-saccades we found higher BOLD activation in the "anti" task than in the "pro" task. A comparison of saccade parameters revealed that saccade frequency and cumulative amplitude were comparable between the two tasks, whereas reaction times were longer in the "anti" task than the pro task. The latter finding is taken to indicate a more demanding cortical processing in the "anti" task than the "pro" task, which could explain the observed difference in BOLD activation. We hold that a quantitative analysis of saccade parameters (especially saccade frequency and latency) is important for the interpretation of the BOLD changes observed with visual stimuli in fMRI

    Electronic and atomic shell structure in aluminum nanowires

    Get PDF
    We report experiments on aluminum nanowires in ultra-high vacuum at room temperature that reveal a periodic spectrum of exceptionally stable structures. Two "magic" series of stable structures are observed: At low conductance, the formation of stable nanowires is governed by electronic shell effects whereas for larger contacts atomic packing dominates. The crossover between the two regimes is found to be smooth. A detailed comparison of the experimental results to a theoretical stability analysis indicates that while the main features of the observed electron-shell structure are similar to those of alkali and noble metals, a sequence of extremely stable wires plays a unique role in Aluminum. This series appears isolated in conductance histograms and can be attributed to "superdeformed" non-axisymmetric nanowires.Comment: 15 pages, 9 figure

    Electronic shell effects and the stability of alkali nanowires

    Full text link
    Experimental conductance histograms for Na nanowires are analyzed in detail and compared to recent theoretical results on the stability of cylindrical and elliptical nanowires, using the free-electron model. We find a one-to-one correspondence between the peaks in the histograms and the most stable nanowire geometries, indicating that several of the commonly observed nanowires have elliptical cross sections
    corecore